Deep Network Regularization via Bayesian Inference of Synaptic Connectivity

نویسندگان

  • Harris Partaourides
  • Sotirios Chatzis
چکیده

Deep neural networks (DNNs) often require good regularizers to generalize well. Currently, state-of-the-art DNN regularization techniques consist in randomly dropping units and/or connections on each iteration of the training algorithm. Dropout and DropConnect are characteristic examples of such regularizers, that are widely popular among practitioners. However, a drawback of such approaches consists in the fact that their postulated probability of random unit/connection omission is a constant that must be heuristically selected based on the obtained performance in some validation set. To alleviate this burden, in this paper we regard the DNN regularization problem from a Bayesian inference perspective: We impose a sparsity-inducing prior over the network synaptic weights, where the sparsity is induced by a set of Bernoullidistributed binary variables with Beta (hyper-)priors over their prior parameters. This way, we eventually allow for marginalizing over the DNN synaptic connectivity for output generation, thus giving rise to an effective, heuristics-free, network regularization scheme. We perform Bayesian inference for the resulting hierarchical model by means of an efficient Black-Box Variational inference scheme. We exhibit the advantages of our method over existing approaches by conducting an extensive experimental evaluation using benchmark datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multineuronal activity patterns identify selective synaptic connections

25 26 Structured multineuronal activity patterns within local neocortical circuitry are 27 strongly linked to sensory input, motor output, and behavioral choice. These reliable 28 patterns of pairwise lagged firing are the consequence of connectivity since they are not 29 present in rate-matched but unconnected Poisson nulls. It is important to relate 30 multineuronal patterns to their synaptic...

متن کامل

Multineuronal activity patterns identify selective synaptic connections under realistic experimental constraints.

Structured multineuronal activity patterns within local neocortical circuitry are strongly linked to sensory input, motor output, and behavioral choice. These reliable patterns of pairwise lagged firing are the consequence of connectivity since they are not present in rate-matched but unconnected Poisson nulls. It is important to relate multineuronal patterns to their synaptic underpinnings, bu...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Inferring Functional Neural Connectivity with Deep Residual Convolutional Networks

Measuring synaptic connectivity in large neuronal populations remains a major goal of modern neuroscience. While this connectivity is traditionally revealed by anatomical methods such as electron microscopy, an efficient alternative is to computationally infer functional connectivity from recordings of neural activity. However, these statistical techniques still require further refinement befor...

متن کامل

Big Learning with Bayesian Methods

The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine learning, with substantial recent developments on adaptive, flexibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017